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Gel’fand Naimark Theorem (1943)
The notion of a noncommutative space

NCG is based on the correspondence between

Algebra and Geometry

{
compact
Hausdorff spaces

}
'

{
commutative unital
C ∗algebras

}op

X →C(X)

C(X) = algebra of continuous complex valued functions on X with pointwise
multiplication, involution f 7→ f ∗, f ∗(x) = f(x) and ||f ||∞ := supx∈M |f(x)|.

Â = {χ : A →C character} ← A
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Motivated by Gelfand-Naimark theorem{
NC compact
Hausdorff spaces

}
:=

{
(not necessarly commutative)
unital C ∗ −algebras

}op

•While a commutative C ∗-algebra has many characters, one for each point of the
underlying space, for a noncommutative C ∗-algebra characters can be fairly scarce
 NCG is a "point-free" geometry.

• some spaces are better studied by examining algebras of functions on them;
• in part inspired by quantum mechanics:
from commutative algebras of classical observables ( = functions on a space )
to noncommutative algebras of quantum observables (= operators on a Hilbert space).
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More in general, a NC space is an algebra equipped with some additional structures
(C ∗, von Neumann, quantum group, spectral triple,.... )

Example: NC 2-sphere [Podleś]. ∗-algebra O(S 2
q ) generated by elements a ,a∗,b = b ∗

subject to the relations

aa∗+ q−4b2 = 1 , a∗a + b2 = 1 ; ab = q−2ba , a∗b = q2ba∗ , q ∈R

When q = 1 one recovers the classical commutative algebra O(S 2) of polynomials
functions on S 2.

NCG has classical geometry (expressed in algebraic terms) as its classical limit.
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Bundle theory in noncommutative geometry
Serre-Swan Theorem (1962): the notion of a noncommutative vector bundle

{
vector bundles
over X

}
'

{
projective C(X)−modules
of finite type

}

E −→ C(X)-module Γ (E) of sections

Ep = {(x ,v) ∈ X ×CN |p(x)v = v} ←− Ep ' p(C(X)⊗CN )

{
vector bundles
over a nc space A

}
:=

{
projective A −modules
of finite type

}
Remark: Finite projective modules correspond to idempotents in matrix algebras:

E finite projective over A ⇐⇒ ∃ N ∈N / A ⊗CN = E ⊕E ′

⇐⇒ ∃ N ∈N,p = p2 = p∗ ∈MatN (A) / E ' p(A ⊗CN )
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Example. Podleś 2-sphere S 2
q with generators a ,a∗,b = b ∗ subject to the relations

aa∗+ q−4b2 = 1 , a∗a + b2 = 1 ; ab = q−2ba , a∗b = q2ba∗ , q ∈R+

The matrix

pq :=
1
2

(
1 + q−2b q a

q−1a∗ 1− b

)
∈Mat(2,S 2

q )

is an idempotent vector bundle over S 2
q (monopole)

(pq is the Bott projection in the classical limit q = 1).

notion of equivalence of idempotents K-theory;

topological invariants (via Connes-Chern pairing)

purely algebraic def. of differential calculus (Ωn A ,d) on a (nc) algebra A

connection on E is ∇ : E → E ⊗A Ω
1A satisfying Leibniz rule

( for E finite projective module, always ∃ Grassmann connection: ∇ := pd

∇2 curvature gauge theories on NC spaces
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Symmetries: from groups to Hopf algebras.

G group of matrices (G = SL(n ,C), SO(n ,C), . . . )


µ : G ×G → G , (g ,h) 7→ gh
e ∈ G
inv : G → G ,g→ g−1

 O(G) is a Hopf algebra: unital algebra H with

∆ : H → H ⊗H coproduct , h 7→ h(1) ⊗h(2)

ε : H →C counit

S : H → H antipode

satisfying prop. 1−3 below.

indeed the group structure induces on H := O(G) the maps

∆= µ∗ ε = eve S = inv∗

1 µ associative ⇒ (∆⊗ id)∆= (id ⊗∆)∆

2 ge = g = eg ⇒ (ε⊗ id)∆= id = (id ⊗ ε)∆

3 gg−1 = e = g−1g ⇒ m(S ⊗ id)∆= ε(1) = m(id ⊗S)∆
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The theory of Hopf algebras has its roots in algebraic topology (Hopf ’40s, Sweedler
’60s). Later in the 80’s: quantum group theory (Faddeev-Reshetikhin-Takhtajan,
Drinfeld, Woronowicz, Majid,...).

Coordinate algebras of quantum groups (FRT bialgebras):
SOq (n), Uq (n), Spq (2n), ....; SUq (2) (Woronowicz)

Quantized universal enveloping algebras (Drinfeld-Jimbo algebras): Uq (g)

Definition

Let H be a Hopf algebra, an H-comodule algebra is an algebra A together with an
algebra morphism δ : A → A ⊗H (coaction) such that

(∆⊗ id)δ = (id ⊗ δ)δ , (ε⊗ id)δ = id

G -spaces: α : X ×G → X action dualizes to δ := α∗ : C(X)→C(X)⊗C(G)

x(gh) = (x(g))h  (id ⊗∆) ◦ δ = (δ⊗ id) ◦ δ
(x)e = x (id⊗ ε)δ = id
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NC principal bundles & Hopf-Galois extensions [Kreimer, Takeuchi 1981]

H Hopf algebra (structure group)

A an H -comodule algebra (total space) with coaction the algebra map

δ : A → A ⊗H , a 7→ a(0) ⊗a(1)

B algebra (base space), B ' A co(H) := {b ∈ A |δ(b) = b ⊗1H }
+ principality condition: the algebra extension B ⊆ A is Hopf-Galois:

χ = (mA ⊗ id)(id ⊗B δ) : A ⊗B A → A ⊗H

a ⊗B a ′ 7→ aa ′ (0) ⊗a ′ (1)

(canonical map) is bijective.
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Example: the 2nd Hopf bundle (instanton bundle)

S 7 ×SU(2)
α // S 7

����
S 4 ' S 7/SU(2)

principal bundle

! A = O(S 7) O(S 7)⊗O(SU(2))
δ=α∗oo

B = O(S 4) ' O(S 7)co H
?�

OO

Hopf-Galois extension
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various constructions on different noncommutative spheres, e.g.

- from FRT-bialgebras with S 7
q as quantum homog. space of O(Spq (2)). Here

q ∈R, with q = 1 classical case. [Landi, P., Reina 2006]

- or isospectral deformations O(S m
Θ

). Here Θ ∈Mat(n ,R), m = 2n ,2n + 1
antisymmetric, with Θ = 0 classical case. [Landi, Brain, P. , Reina, van
Suijlekom,. . . 2005–]

monopole bundle S 3→ S 2 [Brzezinski, Majid, 1993]

associated vector bundles p = p2 and (instanton) connections ∇= pd .
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Noncommutative principal bundles through twists deformation
[Aschieri, Bieliavsky, P., Schenkel, Commun. Math. Phys 2017]

A

B = A coH
?�

H

OO
deformation by twists

 Ã

B̃ = Ã coH̃
?�

H̃

OO

−→ use the theory of Drinfeld to deform algebra extensions into new algebra
extensions in such a way to preserve the condition to be Hopf-Galois, i.e. the
invertibility of the canonical map

χ : A ⊗B A −→ A ⊗H ∈Mor(AMH
A )

−→ deform (classical or nc) principal bundles into (nc) principal bundles.
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Drinfel’d theory of twists

Definition

A linear map γ : H ⊗H →K is called a (unital) 2-cocycle on H provided

γ
(
g(1) ⊗h(1)

)
γ
(
g(2)h(2) ⊗ k

)
= γ

(
h(1) ⊗ k(1)

)
γ
(
g ⊗h(2)k(2)

)
γ (h ⊗1H ) = ε(h) = γ (1H ⊗h)

for all g ,h ,k ∈ H (where h(1) ⊗h(2) = ∆(h) coproduct, sum understood).

Twisting Hopf-algebras:

Let γ be a convolution invertible 2-cocycle on (H ,∆, ε) with inverse γ̄ . Then

mγ (h ⊗ k) := h ·γ k := γ
(
h(1) ⊗ k(1)

)
h(2)k(2)γ̄

(
h(3) ⊗ k(3)

)
defines a new associative product on (the K-module underlying) H .

The resulting algebra Hγ := (H ,mγ ,1H ) with unchanged coproduct ∆ and counit ε and
twisted antipode Sγ := uγ ∗S ∗ ūγ is a Hopf algebra.
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• Deforming spaces carrying H as a symmetry:

(A ,δA ) ∈ AH  (Aγ ,δ
Aγ ) ∈ AHγ

If (A ,δA ) ∈ AH is a right H -comodule algebra with coaction

δA : A → A ⊗H , a 7→ a(0) ⊗a(1)

then A , with same coaction, is an Hγ -comodule algebra when endowed with the new
product

a ⊗a ′ 7→a •γ a ′ := a(0)a
′
(0)γ̄

(
a(1) ⊗a ′ (1)

)
We denote it by Aγ .
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Twisting of Hopf-Galois extensions

Case 1: cocycle γ : H ⊗H →K on the ‘structure group’ H

• H  twisted Hopf-algebra Hγ
with twisted product h ·γ k := γ

(
h(1) ⊗ k(1)

)
h(2)k(2)γ̄

(
h(3) ⊗ k(3)

)
• A ∈ AH  twisted comodule-algebra Aγ ∈ AHγ with same coaction

and twisted product a •γ a ′ := a(0)a ′ (0)γ̄
(
a(1) ⊗a ′ (1)

)
• B ⊆ A is unchanged!

• apply to HG extensions:

A

H
x

B = A coH

 
twisting
γ on H  

Aγ

Hγ
x

B = A
coHγ
γ
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Theorem

The following diagram in AγM
Hγ
Aγ

commutes:

Aγ ⊗
γ
B Aγ

ϕA ,A

��

χγ // Aγ ⊗γ (Hγ )

id⊗γQ
��

Aγ ⊗γ (H)γ

ϕA ,H

��
(A ⊗B A)γ

Γ (χ)=χ // (A ⊗H)γ

Corollary

The extension B = A coH ⊂ A is H-Galois ⇐⇒ the extension B ' A
coHγ
γ ⊂ Aγ is

Hγ -Galois.
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Case 2: cocycle σ on an external Hopf algebra of symmetries

Let K be a Hopf algebra and σ a 2-cocycle on it.

Suppose that the total space A carries an additional structure of left K -comodule
algebra A ∈ KA s.t. the coaction ρA : A → K ⊗A is H -equivariant:

(ρA ⊗ id)δA = (id⊗ δA )ρA

A

H
x

B = A coH

 
twisting
σ on K  

σA

H
x

σB ' (σA)co(H)

• σA still carries the coaction of H !
• the base space B is twisted! (while H is unchanged)

Theorem

B ⊆ A is Hopf-Galois if and only if σB ⊆ σA is Hopf-Galois.
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EXAMPLE. The quantum Hopf bundle on the Connes-Landi sphere S 4
θ

• Let K = O(T2) be the (commutative) algebra of functions on the 2-torus T
2, ∃ a left

coaction of O(T2) on the algebra O(S 7):

ρ : O(S 7)→O(T2)⊗O(S 7) , zi 7→ τi ⊗ zi

which is O(SU(2))-equivariant.

• Let σ be the exponential 2-cocycle on O(T2) determined by setting

σ
(
tj ⊗ tk

)
= exp(iπΘjk ); Θ =

(
0 θ
−θ 0

)
; θ ∈R

O(S 7)

O(SU(2))
x

O(S 4)

 
twisting
σ on K  

O(S 7
θ )xO(SU(2))

O(S 4
θ )

The resulting bundle is the quantum Hopf bundle on the Connes-Landi sphere O(S 4
θ )

[Landi, van Suijlekom, 2005].
Remark: Its principality follows from the theory and doesn’t need to be proved!
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Case 3: combination of deformations

Case 1. γ on H : (A ,H ,B) (Aγ ,Hγ ,B)

Case 2. σ on K : (A ,H ,B) (σA ,H ,σB)

• Let as before A be a right H - comodule algebra with an equivariant left coaction of K
• Let γ a 2-cocycle on H and σ a 2-cocycle on K

A

H
x
B

 double
twisting 

σAγ

Hγ
x
σB

Theorem

B ⊆ A is H-Hopf Galois if and only if σB ⊆ σAγ is Hγ -Hopf Galois.

Application: quantum homogeneous spaces
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The gauge group

For a principal G -bundle π : P → X , the group GP of gauge transformations is

the subgroup of principal bundle automorphisms which are vertical:

GP = AutV (P) := {ϕ : P → P ; ϕ(pg) = ϕ(p)g ,π ◦ϕ = π},

with group law given by the composition of maps;

the group of G -equivariant maps,

GP = {σ : P → G ; σ(pg) = g−1σ(p)g}

with pointwise product, (σ · τ)(p) := σ(p)τ(p) ∈ G .

(Locally, x ∈ X → g(x) ∈ G )
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The group of gauge transformations acts by pullback on the setAP of connections
of the bundle π : P → X .
ω,η connection forms are gauge equivalent iff ∃ϕ ∈ GP such that ϕ∗ω = η.
Indeed gauge equivalence defines an equivalence relation onAP

 M= AP /GP moduli space of connections

Aim: extend the notion of gauge transformations to the algebraic framework of
(NC) Hopf-Galois extensions.

• [Brzeziński (1996)]
Problem: In the classical limit (commutative case) it doesn’t give the expected result,
but a group bigger than the gauge group of the bundle....

• [Aschieri, Landi, P. (2018)] in the framework of coquasitriangular Hopf algebras
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Coquasitriangular Hopf algebras

A Hopf algebra H is called coquasitriangular if it is endowed with a linear map

R : H ⊗H →K (universal r-form)

(with some properties) such that mop = R ∗m ∗ R̄ , i.e. for all h ,k ∈ H

kh = R
(
h(1) ⊗ k(1)

)
h(2)k(2)R̄

(
h(3) ⊗ k(3)

)

Examples

• commutative Hopf algebras with trivial universal r-form R = ε⊗ ε;

• the noncommutative FRT bialgebras Oq (G) deformations of the algebras of
coordinate functions on Lie groups;

• 2-cocycle deformations of coquasitriangular Hopf algebra (H ,R) with universal
r-form

Rγ := γ21 ∗R ∗ γ̄ : h ⊗ k 7−→ γ
(
k(1) ⊗h(1)

)
R
(
h(2) ⊗ k(2)

)
γ̄
(
h(3) ⊗ k(3)

)
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Some useful facts from the theory of cqt Hopf algebras:

• The category (AH ,�) of H -comodule algebras is monoidal: (A ,δA ),(C ,δC ) ∈ AH ,
then the H -comodule A ⊗C with tensor product coaction
δA⊗C : a ⊗ c 7→ a(0) ⊗ c(0) ⊗a(1)c(1) is a right H -comodule algebra,

A �C := (A ⊗C ,•) (braided product algebra)

when endowed with the product

(a ⊗ c) • (a ′ ⊗ c ′) := a RC ,A (c ⊗a ′)c ′ = aa ′ (0) ⊗ c(0)c
′ R

(
c(1) ⊗a ′ (1)

)
.

• The right H -comodule H = (H ,Ad) becomes an H -comodule algebra H = (H ,?,Ad)
when endowed with the product

h ? k := h(2)k(2)R
(
S(h(1))h(3) ⊗S(k(1))

)
(H ,?,η,∆,ε,S ,Ad) is a braided Hopf algebra (associated with H )
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Hopf-Galois extensions for coquasitriangular Hopf algebras and
their gauge groups. [P. Aschieri, G. Landi, C.P. (2018)]

Theorem

Let (H ,R) be a coquasitriangular Hopf algebra and A ∈ A(H ,R)
qc a quasi-commutative

H-comodule algebra. Let B ⊆ Z(A) be the corresponding subalgebra of coinvariants.
Then the canonical map

χ = (m ⊗ id) ◦ (id⊗B δ
A ) : A �B A −→ A �H ,

a ′ �B a 7−→ a ′ a(0) �a(1)

is an algebra map, thus a morphism inAH .

Definition

Let (H ,R) be a coquasitriangular Hopf algebra. A right H-comodule algebra A is

quasi-commutative (with respect to the universal r-form R), A ∈ A(H ,R)
qc if

mA = mA ◦RA ,A , ac = c(0)a(0) R
(
a(1) ⊗ c(1)

)
a ,c ∈ A
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Examples

• Clearly, for (H , ε⊗ ε), every commutative algebra A ∈ AH is quasi-commutative.

• Twist deformations Aγ ∈ AHγ of quasi-commutative algebras A via a 2-cocycle on H
are quasi-commutative algebras.
• A main example of quasi-commutative comodule algebra is the H -comodule algebra
(H ,?,Ad) associated with a cotriangular Hopf algebra (H ,R).
• H = O(GLq (2)) is coquasitriangular with (not cotriangular) universal r-form

R
(
uij ⊗ukl

)
= q−1Rik

jl , R
(
D−1 ⊗uij

)
= R

(
uij ⊗D−1

)
= q δij ,

The quantum plane O(C2
q ) = C[x,x2]/〈x1x2 −q x2x1〉 is a quasi-commutative

O(GLq (2))-comodule algebra with coaction δ(xi ) =
∑

j xj ⊗uji .
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The gauge group of a (coquasi4) Hopf-Galois extension.

Let B ⊆ A ∈ A(H ,R)
qc be an H -Hopf-Galois extension, with H coquasitriangular.

Theorem

The K-module of left B-module, right H-comodule algebra morphisms

AutV (A) := Hom
BAH (A ,A) = {F ∈HomAH (A ,A), such that F|B = id}

is a group with respect to map composition F ·G := G ◦F .

Theorem

The K-module of H-equivariant algebra maps H → A

GA := HomAH (H ,A)

is a group with respect to the convolution product,
with inverse f̄ := f ◦S for f ∈HomAH (H ,A). Moreover, the groups (GA ,∗) and
(AutV (A), ·) are isomorphic.
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The K-module of H-equivariant algebra maps H → A

GA := HomAH (H ,A)

is a group with respect to the convolution product,
with inverse f̄ := f ◦S for f ∈HomAH (H ,A). Moreover, the groups (GA ,∗) and
(AutV (A), ·) are isomorphic.
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Twisting gauge groups

Theorem

Let B = A coH ⊆ A be a Hopf-Galois extension and γ a 2-cocycle on H, with H

coquasitriangular and A ∈ A(H ,R)
qc . The gauge group GAγ of the twisted Hopf-Galois

extension B = A
coHγ
γ ⊆ Aγ ∈ A

(Hγ ,Rγ )
qc is isomorphic to the gauge group GA of the initial

Hopf-Galois extension.

Next
• gauge group of a Hopf-Galois extension obtained by twisting for a 2-cocycle on an
external Hopf algebra of symmetries K
(e.g. instanton bundle on Connes-Landi sphere S 4

θ )

• Gauge group of a generic Hopf-Galois extension? Group or Hopf algebra?
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