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Introduction

Mechanical systems

Mechanical systems

@ Described via Lagrangian or Hamiltonian formulation

@ Built-in geometric properties (Manifold structure of
configuration space, symplecticity)

@ Built-in conservation laws due to symmetries (Noether
theorem)

4

Can we find numerical methods that respect / preserve these?




Introduction

Mindful integration

As it turns out, mostly yes.

Structure preserving algorithms ([Hairer], [Sanz-Serna],

[Munthe-Kaas], ...)

@ We can try to respect the manifold structure of the
configuration space.

@ We can preserve at least first or second order invariants
(energy, symplectic form).

For mechanical systems we take special interest in a set of
constant step-size methods called symplectic methods.



Introduction

Symplectic integrators

Why do we like symplectic integrators?

@ Good qualitative and quantitative behaviour.
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Symplectic integrators

Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.
Preserve state-space properties (symplecticity).
Energy not exactly preserved... [Ge & Marsden]

... but good long-term energy behaviour.

0.05[— variational Newmark

Runge-Kutta 4
0 50 100 150 200 250 300
Time

6/33



Introduction

Symplectic integrators

Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.
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How come energy behaves so well?

Theorems ([Moser|, [Benettin & Giogilli], [Tang], [Murua]...)
warrant that symplectic integrators are integrating exactly some
existing Hamiltonian system that is close to the original one.
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Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.
Preserve state-space properties (symplecticity).

Energy not exactly preserved... [Ge & Marsden]

... but good long-term energy behaviour.

How come energy behaves so well?

Theorems ([Moser|, [Benettin & Giogilli], [Tang], [Murua]...)
warrant that symplectic integrators are integrating exactly some
existing Hamiltonian system that is close to the original one.

How do we build them?
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Variational integrators

High-order variational integrators

Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

@ Substitute continuous state space with discrete one.
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q(t)  varied curves {a&x}  varied discrete curves
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Variational integrators

High-order variational integrators

Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

@ Substitute continuous state space with discrete one.

@ Build a discrete analogue of Hamilton's principle.

@ Derive equations of motion and conservations from the
principle.

Discrete equations of motion = Difference equations (a.k.a. our
integrator).



Variational integrators - I .
> High-order variational integrators

Building blocks

Exact discrete Lagrangian

h
12 i) = /0 L(q(r), 4(r))dr

where g(t) solution of the Euler-Lagrange egs. with fixed boundary
values g(0) = qo, q(h) = qu.

Approximation. Discrete Lagrangian

Ly approx. of order r if 3C; > 0, h; > h > 0 s.t.

ILa(q(0), g(h)) — L§(q(0), g(h))|| < Ch™**




Variational integrators

High-order variational integrators

Discrete principle and governing equations

Discrete Hamilton's principle

Discrete curve qq = {q,-},N:O solution of the discrete Lagrangian

system <> critical point of the functional:

N-1
Ja(qa) = > La(qu, Ges1)
k=0

A

Discrete Euler-Lagrange (DEL) equations

DoLg(qk—1,qk) + Dilg(qk, gk+1) = 0,Vk =1,..., N -1

N
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Variational integrators . . .
g High-order variational integrators

Connection with Hamiltonian mechanics

Discrete fibre derivatives

FLY : QxQ — T*Q
(90,91) — (q1,p1 = Da2Lg(to, q0,91))
FL; . QxQ — T*Q

(90,91) — (9o, po = —D1Ly(to,qo,q1))

These provide interpretation of DEL equations as matching of
momenta:

Pi = Dala(qu-1,qx) = —D1Lla(qk, qrs1) = Pyl
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Variational integrators . . .
° High-order variational integrators

Diagram and convergence

Theorem. Variational error [Marsden & West, Patrick & Cuell]

If ELd Hamiltonian map of an order r discrete Lagrangian Ly, then

F[_d = ﬁ[_z + O(hrJrl).
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Variational integrators High-order variational integrators

The starting point

Hamilton-Pontryagin action
(g,v,p):[a,b] CR — TQ&® T*Q, C*([a, b]) curve with C?([a, b))
base component and fixed boundary values g(a) = ga, g(b) = gp.

h
Tl ,19) = /O [L(a(). V(1)) + (p(1). &) — v(e))] dt

d[;(tt) = D1L(q(t), v(t)),

p(t) = D2L(q(t), v(1)),
@) _
dt

v(t), Vte]|o,h].
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Variational integrators High-order variational integrators

Discretizing the action

Discrete Hamilton-Pontryagin action
N-1 s ' . . Qi _ s .
(Tnp)g =D D hbi [L(Q% V§) +<P§<=kh_zaij‘/;ﬁ>

k=0 i=1
+ <Pk+ ils qk+1 Zb VJ>

where (ajj, bj) coefficients of a Runge-Kutta (RK) method.
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Variational integrators High-order variational integrators

Discrete dynamics in T*Q

Discrete dynamical equations: Symplectic partitioned RK methods

S S
qk+1ZQk+thjV;{, Pk+1:Pk+thjW;J<7
j=1 i=1

S| 5}
Qi=agk+hY ajVi, Pi=pc+hy aW,
j=1 j=1

Wli = DlL(QII;7 Vli)v PII; = D2L(Qli7 Vli)v

where (§,’j, BJ) satisfy b,‘é\,'j T+ Bjaj; = b,'Bj and B,’ = (o).
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Variational integrators High-order variational integrators

Discrete dynamics in TQ

Discrete dynamical equations: Symplectic partitioned RK methods

S S
Gy =ak+hY bVl by =pc+hYy bW,
j=1 i=1

S S
Qh=aqthY Vi, Pl=peth 4w,

= =1
Wi = DiL(Qy, Vi), P = DoL(Qy, Vi),
px = DoL(qx, vi), pr+1 = D2L(qr+1, Vit1)s
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Nonholonomic integrators

Nonholonomic mechanics

Nonholonomic Lagrangian system

(L, Q, N) with N, constrain manifold with iy : N < TQ. Locally
described by null-set of ® : TQ — R™, m = codimg/N.

| A\

Dynamical equations
g(a;) _ oL :</\ a¢_>
dt \ 9¢' 9q’ o4 /7 Yi=1,..,n
®(q,q9) =0

NON-VARIATIONAL (NOR SYMPLECTIC)!! Obtained via
Chetaev's principle. A are Lagrange multipliers.

Should we throw away our variational integrators?
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Nonholonomic integrators

Discrete nonholonomic mechanics

No, we can still build from the variational substrate. Previous
attempts by [de Ledn, Martin de Diego & Santamaria], [Cortés &
Martinez], [Ferraro, Iglesias & Martin de Diego], [Jay]...

Somehow construct discrete nonholonomic fibre derivatives
F(LN)*: Q x @ — M, where M = FLN (N) and LN = Lo iy.

Augmented point of view

Easier to build IF : Q x A x @ x A — T*Q x A, where A = R™,
and find Ao, A1 s.t. T5(qo, Mo, g1, A1) € T*Qy x A
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Nonholonomic integrators

Discrete nonholonomic mechanics |l

For a certain family of RK methods (ajj, bj) (Lobatto-type):

Nonholonomic integrator

S S
Qk+1 :qk+hzbin’, Pk+1=Pk+thiWk'7
‘ Ijl . ‘ l:sl '
Qi=aqc+h>_ a;Vi, Pi=pc+h>_ aW,
j=1 j=1

Wi = DIL(Q}, Vi) + (Nis D29(Q), Vi), Pl = D2L(Q, Vi),

S
. = Qi P =pk+hY ajWi,
j=1

W(qf,p) =0

where (4j, Bj) satisfy b;aj; + Bjaj,- = b,-l3j and b; = b; and W = ® o FL1L.

This generates a well-defined nonholonomic Hamiltonian flow
FL o T*Qlpy x A= T*Qlp x A, (g0, pos Ao) — (a1, p1, A1).
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Nonholonomic integrators

Discrete nonholonomic mechanics |l

nholonomic integrator

qk+1—qk+h2b Vi, pk+17pk+h2bwk,

QL—QkJFhZau ko PL—Pk+hzau ko
Wi = DiL(Qf, Vi) + (Niy D28(Q), Vi) ), Pl = DaL(Q, Vi),

. . . g .
9k = Qi ph=pk+hY_ a;Wi,
px = DaL(qk, vi), pi = D2L(q}, vi)

®(qh, vi) =0
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Nonholonomic integrators

Discrete nonholonomic mechanics IV

Key players

s S
Qi=ac+hY a;Vi, Pi=pc+hy 3;W,
j=1 =1

s
P =pk+hY a;W
j=1




Nonholonomic integrators

Discrete nonholonomic mechanics IV

Key players

S S s
Qi=ak+h> a;Vi, Pi=pc+h> W, pi=pc+hd aWi
j=1 j=1 j=1

A

W

S

t ty+he, ty+h




Nonholonomic integrators

Discrete nonholonomic mechanics IV

Key players

S s s
QLZQk+hZaijV;J(7 PL:Pk+hZ§UWi7 PL:Pk+hZa;jWi
j=1 j=1 =1

hb, hb,

—_——
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\
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Nonholonomic integrators

Discrete nonholonomic mechanics IV

Key players

S S s
QLZQk+hZaijV;J(7 PL:Pk+hZ§ijW;J(7 PL:PkJtha,-jWé
j=1 j=1 j=1

hb,

—_——

t() t() +h CZ t(l +h



Nonholonomic integrators

Discrete nonholonomic mechanics V
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Nonholonomic integrators

Discrete nonholonomic mechanics VI

Unfortunately, the variational error theorem does not apply. We
need to prove order using numerical analysis techniques.

Theorem. Global error

If we use an s-stage member of the Lobatto-type family [...] the
order of the nonholonomic Hamiltonian flow generated by the
former integrator is r = 2s — 2 in M thus achieving parity with the
expected variational error.
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Lie group integrators

The starting point (again)

Hamilton-Pontryagin action on Lie groups
(g,v,p):[a,b] CR—-TG:=TG® T*G.

h
Tnr (g, v,p)—/0 [L(g(2), v(2)) + (p(t), &(t) — v(1))] dt

Dynamical equations

) _ b, 1(g(t), (1)),
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Lie group integrators

Partially reduced case

Reduced Hamilton-Pontryagin action
(g,myp) [a, )] CR—Gxgxghl:Gxg— R

h
Jyp(g,n,u)—/o [6(g(t),n(t)) + {u(t), g~ (£)&(t) — n(t))] dt

Reduced Dynamical equations

) _ agnoyu(®) + (Leto)” Drtg(0) (1)
wu(t) = DaL(g(t),n(t)),

B (L), 10, vee oL




Lie group integrators

Lie group integrators

Assume L, -1g € Ue and let 7: g — Ue C G be a retraction.

Tr TLy
Tg " TUe ———— TG

Tr—! TL, '=TL, 1
erg J,TFU G
T Lp

(57 B .LL) = TthlgTingLh_l(g’ Vg, Pg)
— —1 * *
= (T ! (Lh_lg) ’dLTT—l(Lh,lg) Tng_l Ve (dLTT_l(Lh,lg)) (TeLg) Pg)
(g, Ve, Pg) = Tr(eyLnTe(€,m, 1)

= (Lh7(&), Telr,meyd ren (Tume)Liprien-1) (d5re) ne)

where d-7 1 g x g — g left-trivialized tangent of .
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Lie group integrators

Variational Lie group integrators

Reduced discrete Hamilton-Pontryagin action

£: G x g — R partially reduced Lagrangian.

S

N—-1
(Twp)g = D h [b,-z (8rr(eid). d gk )

=0 i=1

k
—~i 1 . ° :
+<Mk,hff<—zaij77;<>
j=1
 (rn, 2 () e an’
Hk+1, h x) k+1) &
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Lie group integrators

Variational Lie group integrators

Discrete dynamical equations
s
gh=1" (gIIGL) =h_agm
j=1
g .
i =77 (& gern) = b by,
j=1

s *
P . Z ) L_—1 i _—1 J
My = AdT(Ek,kﬂ) #e+h = & (d -& b d Tﬁgk*“) N
=

Pkl = Ad*(fk k1) |HK -|-th (dL 7lk> NJk:| 7

Nj = (dtry ) L ey Dit (gkr(ék) dirg )

& . .
Ek k+1 H +hz J - (ddLTJ) <T]f<,l—ljk):|’

I

G
ITj = (dLT{_.L Dzé( kf(ﬁk) d mm)
(

[l
—
3
|
~__
‘gz
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Lie group integrators

Variational Lie group integrators

Second trivialized differential of 7

dd:7 : g x g x g — g linear map on second and third arguments
s.t.:

O (d“7en)) 8¢ = d-reddtre(n, 66).

Appears naturally when considering elements from T(2 G
represented by elements (£,7,() € T@yg:

(7(&). m(€)dtren, 7(€)d"re | + dd*re (n,m)) )

31/33



Lie group integrators

Nonholonomic Lie group integrators

Modified discrete dynamical equations

N, = (dtrg)’ [L;r(ébDM CRCER
+ </\L, D¢ (ng(££% dLTgLnL)>]
g = G
Hic= AdY g1 {“k + h; 2 (dLT—_g’;) * Ni]
v (gl i) =0

where ¢: G xg—Rand poFl~l =4 : G x g* = R.

Convergence rates coincide with their vector space counterparts.
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