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Introduction
Variational integrators

Nonholonomic integrators
Lie group integrators

Mechanical systems

Mechanical systems

Described via Lagrangian or Hamiltonian formulation

Built-in geometric properties (Manifold structure of
configuration space, symplecticity)

Built-in conservation laws due to symmetries (Noether
theorem)

Question 1

Can we find numerical methods that respect / preserve these?
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Nonholonomic integrators
Lie group integrators

Mindful integration

As it turns out, mostly yes.

Structure preserving algorithms ([Hairer], [Sanz-Serna],
[Munthe-Kaas], ...)

We can try to respect the manifold structure of the
configuration space.

We can preserve at least first or second order invariants
(energy, symplectic form).

For mechanical systems we take special interest in a set of
constant step-size methods called symplectic methods.
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Nonholonomic integrators
Lie group integrators

Symplectic integrators

Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.

Preserve state-space properties (symplecticity).

Energy not exactly preserved... [Ge & Marsden]

... but good long-term energy behaviour.

How come energy behaves so well?

Theorems ([Moser], [Benettin & Giogilli], [Tang], [Murua]...)
warrant that symplectic integrators are integrating exactly some
existing Hamiltonian system that is close to the original one.

188 VI. Symplectic Integration of Hamiltonian Systems
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Fig. 3.1. Area preservation of numerical methods for the pendulum; same initial sets as in
Fig. 2.2; first order methods (left column): h = π/4; second order methods (right column):
h = π/3; dashed: exact flow

Example 3.2. We consider the pendulum problem of Example 2.5 with the same
initial sets as in Fig. 2.2. We apply six different numerical methods to this problem:
the explicit Euler method (I.1.5), the symplectic Euler method (I.1.9), and the im-
plicit Euler method (I.1.6), as well as the second order method of Runge (II.1.3)
(the right one), the Störmer–Verlet scheme (I.1.17), and the implicit midpoint rule
(I.1.7). For two sets of initial values (p0, q0) we compute several steps with step size
h = π/4 for the first order methods, and h = π/3 for the second order methods.
One clearly observes in Fig. 3.1 that the explicit Euler, the implicit Euler and the
second order explicit method of Runge are not symplectic (not area preserving). We
shall prove below that the other methods are symplectic. A different proof of their
symplecticity (using generating functions) will be given in Sect. VI.5.

In the following we show the symplecticity of various numerical methods from
Chapters I and II when they are applied to the Hamiltonian system in the vari-
ables y = (p, q),

ṗ = −Hq(p, q)

q̇ = Hp(p, q)
or equivalently ẏ = J−1∇H(y),

where Hp and Hq denote the column vectors of partial derivatives of the Hamil-
tonian H(p, q) with respect to p and q, respectively.
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Fig. 1. Energy computed with variational Newmark
(solid line) and Runge–Kutta (dashed line). Note that
the variational method does not artificially dissipate
energy

This is clearly a discretization of Newton’s equations, using a simple finite
difference rule for the derivative.

If we take initial conditions (q0, q1) then the discrete Euler–Lagrange equa-
tions define a recursive rule for calculating the sequence {qk}Nk=0. Regarded
in this way, they define a map FLd

: (qk, qk+1) 7→ (qk+1, qk+2) which we can
think of as a one-step integrator for the system defined by the continuous
Euler–Lagrange equations.

Indeed, as we will see later, many standard one-step methods can be
derived by such a procedure. An example of this is the well-known Newmark
method, which for the parameter settings γ = 1

2 and β = 0 is derived by
choosing the discrete Lagrangian

Ld(q0, q1, h) = h

[(
q1 − q0

h

)T

M

(
q1 − q0

h

)
−

(
V (q0) + V (q1)

2

)]
.

If we use this variational Newmark method to simulate a model system and
plot the energy versus time, then we obtain a graph like that in Figure 1.
For comparison, this graph also shows the energy curve for a simulation with
a standard stable method such as RK4 (the common fourth-order Runge–
Kutta method).

The system being simulated here is purely conservative and so there should
be no loss of energy over time. The striking aspect of this graph is that
while the energy associated with a standard method decays due to numerical
damping, for the Newmark method the energy error remains bounded. This

Question 2

How do we build them?

6 / 33



Introduction
Variational integrators

Nonholonomic integrators
Lie group integrators

Symplectic integrators

Why do we like symplectic integrators?

Good qualitative and quantitative behaviour.

Preserve state-space properties (symplecticity).

Energy not exactly preserved... [Ge & Marsden]

... but good long-term energy behaviour.

How come energy behaves so well?

Theorems ([Moser], [Benettin & Giogilli], [Tang], [Murua]...)
warrant that symplectic integrators are integrating exactly some
existing Hamiltonian system that is close to the original one.

188 VI. Symplectic Integration of Hamiltonian Systems

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

0 2 4 6 8

−2

2

explicit Euler Runge, order 2

symplectic Euler Verlet

implicit Euler midpoint rule

Fig. 3.1. Area preservation of numerical methods for the pendulum; same initial sets as in
Fig. 2.2; first order methods (left column): h = π/4; second order methods (right column):
h = π/3; dashed: exact flow

Example 3.2. We consider the pendulum problem of Example 2.5 with the same
initial sets as in Fig. 2.2. We apply six different numerical methods to this problem:
the explicit Euler method (I.1.5), the symplectic Euler method (I.1.9), and the im-
plicit Euler method (I.1.6), as well as the second order method of Runge (II.1.3)
(the right one), the Störmer–Verlet scheme (I.1.17), and the implicit midpoint rule
(I.1.7). For two sets of initial values (p0, q0) we compute several steps with step size
h = π/4 for the first order methods, and h = π/3 for the second order methods.
One clearly observes in Fig. 3.1 that the explicit Euler, the implicit Euler and the
second order explicit method of Runge are not symplectic (not area preserving). We
shall prove below that the other methods are symplectic. A different proof of their
symplecticity (using generating functions) will be given in Sect. VI.5.

In the following we show the symplecticity of various numerical methods from
Chapters I and II when they are applied to the Hamiltonian system in the vari-
ables y = (p, q),
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tions define a recursive rule for calculating the sequence {qk}Nk=0. Regarded
in this way, they define a map FLd

: (qk, qk+1) 7→ (qk+1, qk+2) which we can
think of as a one-step integrator for the system defined by the continuous
Euler–Lagrange equations.

Indeed, as we will see later, many standard one-step methods can be
derived by such a procedure. An example of this is the well-known Newmark
method, which for the parameter settings γ = 1

2 and β = 0 is derived by
choosing the discrete Lagrangian

Ld(q0, q1, h) = h

[(
q1 − q0

h

)T

M

(
q1 − q0

h

)
−

(
V (q0) + V (q1)

2

)]
.

If we use this variational Newmark method to simulate a model system and
plot the energy versus time, then we obtain a graph like that in Figure 1.
For comparison, this graph also shows the energy curve for a simulation with
a standard stable method such as RK4 (the common fourth-order Runge–
Kutta method).

The system being simulated here is purely conservative and so there should
be no loss of energy over time. The striking aspect of this graph is that
while the energy associated with a standard method decays due to numerical
damping, for the Newmark method the energy error remains bounded. This

Question 2

How do we build them?
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takes different values for different paths q(t). Hamilton’s principle states that this integral
takes a critical point for the physical path.
To make calculations tractable let us not consider all possible paths from q(t1) to q(t2)
but a family in which each path is determined by a parameter ε. This family shall contain
the actual, physical path for ε = 0. Each path is a function of time, labelled by ε,

qε(t) ≡ q(t, ε) with fixed ε. (2.93)

The function qε(t) shall be differentiable for both, t at fixed ε and ε at fixed t, such that
mixed partial derivatives can be exchanged

∂2qε
∂t ∂ε

= ∂2qε
∂ε∂t

. (2.94)

All paths shall start at q(t1) and end at q(t2), such that

qε(t1) = q0(t1) = q(t1) ≡ q1

qε(t2) = q0(t2) = q(t2) ≡ q2
(2.95)

or
∂qε
∂ε

(t1) = ∂qε
∂ε

(t2) = 0. (2.96)

One example of such a family, often considered exclusively in classical mechanics text-
books, is

qε(t) = q(t) + ε δq. (2.97)

This, however, requires that q(t) takes values in a linear space, an assumption that gen-
erally cannot be made in the geometric framework on manifolds. Therefore we consider
more general transformations of the form (2.93). The action integral is given by

A[qε] = t2∫
t1

L(qε(t), q̇ε(t))dt, (2.98)

and has different values for different ε. Hamilton’s principle of stationary action states
that for each one-parameter family qε that fulfils the above conditions (2.94 - 2.96), q is
a critical point of the action iff

54 3. Variational Integrators

q0 qN

{qk} varied discrete curves

Fig. 3.1.: Variations of the discrete trajectory {qk}Nk=0.

The generalised velocities will usually be discretised by simple finite-difference expres-
sions1, i.e.

q̇ ≈ qk+1 − qk
h

for t ∈ [tk, tk+1]. (3.3)

The quadrature (3.1) is most often realised by either the trapezoidal rule

Ltr
d (qk, qk+1) = h2 L(qk, qk+1 − qk

h
) + h2 L(qk+1,

qk+1 − qk
h

) (3.4)

or the midpoint rule

Lmp
d (qk, qk+1) = hL(qk + qk+1

2 ,
qk+1 − qk

h
). (3.5)

The configuration manifold of the discrete theory is still Q, but the discrete state space
is Q ×Q instead of TQ, such that the discrete Lagrangian Ld is a function

Ld ∶ Q ×Q→ R. (3.6)

3.1.1. Discrete Action Principle
The discrete trajectories qd = {qk}Nk=0 are required to satisfy a discrete version of Hamilton’s
principle of least action

δAd[qd] = δ N−1∑
k=0

Ld(qk, qk+1) = 0. (3.7)

The variation of the action is

δAd[qd] = N−1∑
k=0

[D1Ld(qk, qk+1) ⋅ δqk +D2Ld(qk, qk+1) ⋅ δqk+1] (3.8)

where Di denotes the derivative with respect to to the ith argument. What follows
corresponds to a discrete integration by parts, i.e., a reordering of the summation. The

1 In the first term of the trapezoidal rule (3.4), this corresponds to a forward finite-difference, in the
second term to a backward finite-difference, and in the midpoint rule (3.5) to a centred finite-difference.

Discrete equations of motion = Difference equations (a.k.a. our
integrator).
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Building blocks

Exact discrete Lagrangian

Led(q0, q1) =

∫ h

0
L(q(τ), q̇(τ))dτ

where q(t) solution of the Euler-Lagrange eqs. with fixed boundary
values q(0) = q0, q(h) = q1.

Approximation. Discrete Lagrangian

Ld approx. of order r if ∃C1 > 0, h1 > h > 0 s.t.

‖Ld(q(0), q(h))− Led(q(0), q(h))‖ ≤ C1h
r+1
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Discrete principle and governing equations

Discrete Hamilton’s principle

Discrete curve qd = {qi}Ni=0 solution of the discrete Lagrangian
system ⇔ critical point of the functional:

Jd(qd) =
N−1∑

k=0

Ld(qk , qk+1)

Discrete Euler-Lagrange (DEL) equations

D2Ld(qk−1, qk) + D1Ld(qk , qk+1) = 0,∀k = 1, ...,N − 1
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Connection with Hamiltonian mechanics

Discrete fibre derivatives

FL+
d : Q × Q → T ∗Q

(q0, q1) 7→ (q1, p1 ≡ D2Ld(t0, q0, q1))
FL−d : Q × Q → T ∗Q

(q0, q1) 7→ (q0, p0 ≡ −D1Ld(t0, q0, q1))

These provide interpretation of DEL equations as matching of
momenta:

p−k = D2Ld(qk−1, qk) = −D1Ld(qk , qk+1) = p+
k
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Diagram and convergence

Q × Q : (q0, q1) (q1, q2)

T ∗Q : (q0, p0) (q1, p1) (q2, p2)

FL−d FL+
d

FLd

FL−d FL+
d

F̃Ld
F̃Ld

Theorem. Variational error [Marsden & West, Patrick & Cuell]

If F̃Ld Hamiltonian map of an order r discrete Lagrangian Ld , then

F̃Ld = F̃Led +O(hr+1).
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The starting point

Hamilton-Pontryagin action

(q, v , p) : [a, b] ⊂ R→ TQ ⊕T ∗Q, C 1([a, b]) curve with C 2([a, b])
base component and fixed boundary values q(a) = qa, q(b) = qb.

JHP(q, v , p) =

∫ h

0
[L(q(t), v(t)) + 〈p(t), q̇(t)− v(t)〉] dt

Dynamical equations

dp(t)

dt
= D1L(q(t), v(t)),

p(t) = D2L(q(t), v(t)),

dq(t)

dt
= v(t), ∀t ∈ [0, h].
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Discretizing the action

Discrete Hamilton-Pontryagin action

(JHP)d =
N−1∑

k=0

s∑

i=1

hbi


L
(
Q i

k ,V
i
k

)
+

〈
pik ,

Q i
k − qk
h

−
s∑

j=1

aijV
j
k

〉

+

〈
pk+1,

qk+1 − qk
h

−
s∑

j=1

bjV
j
k

〉


where (aij , bj) coefficients of a Runge-Kutta (RK) method.
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Discrete dynamics in T ∗Q

Discrete dynamical equations: Symplectic partitioned RK methods

qk+1 = qk + h
s∑

j=1

bjV
j
k , pk+1 = pk + h

s∑

i=1

b̂jW
j
k ,

Q i
k = qk + h

s∑

j=1

aijV
j
k , P i

k = pk + h
s∑

j=1

âijW
j
k ,

W i
k = D1L(Q i

k ,V
i
k), P i

k = D2L(Q i
k ,V

i
k),

where (âij , b̂j) satisfy bi âij + b̂jaji = bi b̂j and b̂i = bi .
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High-order variational integrators

Discrete dynamics in TQ

Discrete dynamical equations: Symplectic partitioned RK methods

qk+1 = qk + h
s∑

j=1

bjV
j
k , pk+1 = pk + h

s∑

i=1

b̂jW
j
k ,

Q i
k = qk + h

s∑

j=1

aijV
j
k , P i

k = pk + h
s∑

j=1

âijW
j
k ,

W i
k = D1L(Q i

k ,V
i
k), P i

k = D2L(Q i
k ,V

i
k),

pk = D2L(qk , vk), pk+1 = D2L(qk+1, vk+1),
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Nonholonomic mechanics

Nonholonomic Lagrangian system

(L,Q,N) with N, constrain manifold with iN : N ↪→ TQ. Locally
described by null-set of Φ : TQ → Rm, m = codimTQN.

Dynamical equations
{

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
=
〈
λ, ∂Φ

∂q̇i

〉
,

Φ(q, q̇) = 0
∀i = 1, ..., n

NON-VARIATIONAL (NOR SYMPLECTIC)!! Obtained via
Chetaev’s principle. λ are Lagrange multipliers.

Should we throw away our variational integrators?

18 / 33



Introduction
Variational integrators

Nonholonomic integrators
Lie group integrators

Discrete nonholonomic mechanics

No, we can still build from the variational substrate. Previous
attempts by [de León, Mart́ın de Diego & Santamaŕıa], [Cortés &
Mart́ınez], [Ferraro, Iglesias & Mart́ın de Diego], [Jay]...

Idea

Somehow construct discrete nonholonomic fibre derivatives
F
(
LNd
)±

: Q × Q → M, where M = FLN (N) and LN = L ◦ iN .

Augmented point of view

Easier to build Γ±d : Q × Λ× Q × Λ→ T ∗Q × Λ, where Λ ∼= Rm,
and find λ0, λ1 s.t. Γ±d (q0, λ0, q1, λ1) ∈ T ∗Q|M × Λ.
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Discrete nonholonomic mechanics II

For a certain family of RK methods (aij , bj) (Lobatto-type):

Nonholonomic integrator

qk+1 = qk + h
s∑

i=1

biV
i
k , pk+1 = pk + h

s∑
i=1

b̂iW
i
k ,

Q i
k = qk + h

s∑
j=1

aijV
j
k , P i

k = pk + h
s∑

j=1

âijW
j
k ,

W i
k = D1L(Q i

k ,V
i
k ) +

〈
Λi
k ,D2Φ(Q i

k ,V
i
k )
〉
, P i

k = D2L(Q i
k ,V

i
k ),

qik = Q i
k , pik = pk + h

s∑
j=1

aijW
j
k ,

Ψ(qik , p
i
k ) = 0

where (âij , b̂j ) satisfy bi âij + b̂jaji = bi b̂j and b̂i = bi and Ψ = Φ ◦ FL−1.

This generates a well-defined nonholonomic Hamiltonian flow
F̃Λ
Ld

: T ∗Q|M × Λ→ T ∗Q|M × Λ, (q0, p0, λ0) 7→ (q1, p1, λ1).
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Discrete nonholonomic mechanics III

Nonholonomic integrator

qk+1 = qk + h
s∑

i=1

biV
i
k , pk+1 = pk + h

s∑
i=1

b̂iW
i
k ,

Q i
k = qk + h

s∑
j=1

aijV
j
k , P i

k = pk + h
s∑

j=1

âijW
j
k ,

W i
k = D1L(Q i

k ,V
i
k ) +

〈
Λi
k ,D2Φ(Q i

k ,V
i
k )
〉
, P i

k = D2L(Q i
k ,V

i
k ),

qik = Q i
k , pik = pk + h

s∑
j=1

aijW
j
k ,

pk = D2L(qk , vk ), pik = D2L(qik , v
i
k )

Φ(qik , v
i
k ) = 0
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Discrete nonholonomic mechanics IV

Key players

Q i
k = qk + h

s∑
j=1

aijV
j
k , P i

k = pk + h
s∑

j=1

âijW
j
k , pik = pk + h

s∑
j=1

aijW
j
k

y0

t0 t0+hc2 t0+h

y1

y0

t0 t0+hc2 t0+h

y1
u(t0)

u(t0+hc2)

u(t0+h)
{ {hb1 hb3

y0

t0 t0+hc2 t0+h

y1

v(t0+hc2)

{ {hb1 hb3
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Discrete nonholonomic mechanics V

Q × Λ× Q × Λ

T ∗Q|M × Λ T ∗Q|M × Λ

Q × Q

M M

Γ−
d Γ+

d

Γ−
Ld ,Ψ

î∗N

F̃Λ
Ld

î∗N

(
Γ+
Ld ,Ψ

)−1

πQ×Q

F(LNd )
− F(LNd )

+

F̃
λ0

LN
d

λ0
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Discrete nonholonomic mechanics VI

Unfortunately, the variational error theorem does not apply. We
need to prove order using numerical analysis techniques.

Theorem. Global error

If we use an s-stage member of the Lobatto-type family [...] the
order of the nonholonomic Hamiltonian flow generated by the
former integrator is r = 2s − 2 in M thus achieving parity with the
expected variational error.
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The starting point (again)

Hamilton-Pontryagin action on Lie groups

(g , v , p) : [a, b] ⊂ R→ TG := TG ⊕ T ∗G .

JHP(g , v , p) =

∫ h

0
[L(g(t), v(t)) + 〈p(t), ġ(t)− v(t)〉] dt

Dynamical equations

dp(t)

dt
= D1L(g(t), v(t)),

p(t) = D2L(g(t), v(t)),

dg(t)

dt
= v(t), ∀t ∈ [0, h].
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Partially reduced case

Reduced Hamilton-Pontryagin action

(g , η, µ) : [a, b] ⊂ R→ G × g× g∗, ` : G × g→ R.

JHP(g , η, µ) =

∫ h

0

[
`(g(t), η(t)) +

〈
µ(t), g−1(t)ġ(t)− η(t)

〉]
dt

Reduced Dynamical equations

dµ(t)

dt
= ad∗η(t)µ(t) +

(
Lg(t)

)∗
D1`(g(t), η(t)),

µ(t) = D2L(g(t), η(t)),

dg(t)

dt
=
(
Lg(t)

)
∗ η(t), ∀t ∈ [0, h].
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Lie group integrators

Assume Lh−1g ∈ Ue and let τ : g→ Ue ⊂ G be a retraction.

Tg TUe TG

g Ue G

πg

Tτ

Tτ−1

πU

TLh

TL−1
h =TLh−1

πG

τ

τ−1

Lh

L−1
h =Lh−1

(ξ, η, µ) = TL
h−1 g τ

−1TgLh−1 (g , vg , pg )

=

(
τ−1 (Lh−1g) , dLτ−1

τ−1(L
h−1 g)

TgLg−1vg ,
(

dLττ−1(L
h−1 g)

)∗
(TeLg )∗ pg

)
(g , vg , pg ) = Tτ(ξ)LhTξτ(ξ, η, µ)

=
(
Lhτ(ξ),TeLLhτ(ξ)dLτξη,

(
TLhτ(ξ)L(Lhτ(ξ))−1

)∗ (
dLτ−1

ξ

)∗
µξ

)
where dLτ : g× g→ g left-trivialized tangent of τ .
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Variational Lie group integrators

Reduced discrete Hamilton-Pontryagin action

` : G × g→ R partially reduced Lagrangian.

(JHP)d =
N−1∑

k=0

s∑

i=1

h

[
bi`
(
gkτ(ξik), dLτξik

ηik

)

+

〈
M̃

i

k ,
1

h
ξik −

s∑

j=1

aijη
j
k

〉

+

〈
µ̃k+1,

1

h
τ−1((gk)−1gk+1)−

s∑

j=1

bjη
j
k

〉
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Variational Lie group integrators
Discrete dynamical equations

ξik = τ−1
(
g−1
k G i

k

)
= h

s∑
j=1

aijη
j
k ,

ξk,k+1 = τ−1
(
g−1
k gk+1

)
= h

s∑
j=1

bjη
j
k ,

Mi
k = Ad∗

τ(ξk,k+1)

µk + h
s∑

j=1

bj

(
dLτ−1

−ξj
k

−
aji

bi
dLτ−1

−ξk,k+1

)∗
Nj

k

 ,
µk+1 = Ad∗

τ(ξk,k+1)

µk + h
s∑

j=1

bj

(
dLτ−1

−ξj
k

)∗
Nj

k

 ,
Ni

k =
(

dLτξi
k

)∗
L∗
gkτ(ξi

k
)
D1`

(
gkτ(ξik ), dLτξi

k
ηik

)
,

Mi
k =

(
dLτ−1

ξk,k+1

)∗ Πi
k + h

s∑
j=1

bjaji

bi

(
ddLτ

ξ
j
k

)∗ (
ηjk ,Π

j
k

) ,
Πi

k =
(

dLτξi
k

)∗
D2`

(
gkτ(ξik ), dLτξi

k
ηik

)
,

µk =
(

dLτ−1
ξk−1,k

)∗
µ̃k .
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Variational Lie group integrators

Second trivialized differential of τ

ddLτ : g× g× g→ g linear map on second and third arguments
s.t.:

∂ξ

(
dLτξη

)
δξ = dLτξddLτξ(η, δξ).

Appears naturally when considering elements from T (2)G
represented by elements (ξ, η, ζ) ∈ T (2)g:

(
τ(ξ), τ(ξ)dLτξη, τ(ξ)dLτξ

[
ζ + ddLτξ (η, η)

])
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Nonholonomic Lie group integrators

Modified discrete dynamical equations

Ni
k =

(
dLτξi

k

)∗ [
L∗
gkτ(ξi

k
)
D1`

(
gkτ(ξik ), dLτξi

k
ηik

)
+
〈

Λi
k ,D2φ

(
gkτ(ξik ), dLτξi

k
ηik

)〉]
g i
k = G i

k

µik = Ad∗
τ(ξi

k
)

µk + h
s∑

j=1

aij

(
dLτ−1

−ξj
k

)∗
Nj

k


ψ
(
g i
k , µ

i
k

)
= 0

where φ : G × g→ R and φ ◦ F`−1 = ψ : G × g∗ → R.

Convergence rates coincide with their vector space counterparts.
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