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Abstract

We have obtained geometrically consistent arbitrarily high-order partitioned Runge-Kutta integrators for nonholonomic systems, both on vector spaces and Lie groups. These methods differ
from those of J. Cortés and S. Mart́ınez [1] in that we do not require the discretisation of the constraint, and contrary to L. Jay’s SPARK integrators [2] we do not require extraneous
combinations of constraint evaluations. Our methods preserve the continuous constraint exactly and can be seen to extend those of M. de León, D. Mart́ın de Diego and A. Santamaŕıa [3].
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Introduction to Nonholonomic Mechanics

A mechanical system on a smooth manifold Q is defined by a Lagrangian
function L : TQ → R and the evolution equations derived from it. For un-
constrained and holonomically constrained systems these equations can
be derived from a variational principle called Hamilton’s principle.
Nonholonomic mechanics is the study of constrained mechanical systems
with constraint manifold N ⊂ TQ, which in most cases is a vector subbun-
dle completely described by a non-integral distribution D. In simpler terms
these systems have velocity constraints which cannot be reduced to position
constraints (such is the case of a rolling disk). It differs from its holonomic
counterpart in that its evolution equations are not variational. These must
be found using the Lagrange-D’Alembert principle and so are related to forced
systems. Still, the resulting equations are very similar to those of holonomically
constrained systems. These take the form:{

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi =
〈
λ, ∂Φ

∂q̇i

〉
Φ(q, q̇) = 0

where λ are Lagrange multipliers and Φ : TQ → Rm, with m = codimN ,
are called constraint functions. Locally, when N is a vector subbundle, the
constraint takes the form Φα(q, v) = µi ,α(q)v i , α = 1, ...,m.

Discrete Mechanics and Variational Integrators

From the Lagrangian of the system we can define another function called energy,
EL = ∆L− L. L is said to be hyperregular if its fibre derivative FL : TQ →
T ∗Q (q, q̇) 7→

(
q, ∂L∂q̇(q, q̇)

)
is a global diffeomorphism. In this case we can

define the Hamiltonian of the system as H = EL◦FL−1. Let S : Q×Q×R→ R
be a complete solution of the Hamilton-Jacobi PDE:

H

(
q1,

∂S

∂q1
(q0, q1, t)

)
=
∂S

∂t
(q0, q1, t)

S defines a pair of diffeomorphisms FS± : Q × Q → T ∗Q called discrete
fibre derivatives:

(q0, q1)

(q0, p0 = − ∂S
∂q0

(q0, q1, t)) (q1, p1 = ∂S
∂q1

(q0, q1, t))

FS− FS+

Fh

and its induced flow Fh : T ∗Q → T ∗Q is symplectic, i.e., F ∗hωQ − ωQ = 0,
where ωQ is the symplectic form in T ∗Q. Such an S is Jacobi’s solution:

S(q0, q1, t) =

∫ t

0

L(q(τ ), q̇(τ ))dτ, with q extremal, q(0) = q0, q(t) = q1

A discrete Lagrangian Ld : Q × Q × R is an approximation of the former
integral via numerical quadrature:

Ld(q0, q1, h) ≈ h
s∑

i=0

biL(Q i ,V i), with appropriately chosen (Q i ,V i)

The discrete Lagrangian for a certain discrete trajectory {qi}Ni=0 can be obtained

by addition as Ld(q0, qN,Nh) =
∑N−1

k=0 Ld(qk, qk+1, h). Performing the dis-
crete analogue of Hamilton’s principle we obtain the so-called discrete Euler-
Lagrange equations:

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0⇔ p−k (qk−1, qk) = p+
k (qk, qk+1)

These equations define numerical integrators for our mechanical system having
the property of preserving symplecticity and having excellent long term energy
behaviour [5], [4]. The resolution scheme for an IVP becomes:

Q × Q : (q0, q1) (q1, q2)

T ∗Q : (q0, p0) (q1, p1)

TQ : (q0, v0)

FL+d

FLd

FL−d FL+d(FL−d )
−1

F̃h F̃h

FL

Idea

For simplicity we will focus here on systems subjected to linear nonholonomic constraints, even
though our method will work in the nonlinear case as well. Systems subjected to linear constraints are
energy preserving. The flows of nonholonomic systems are not symplectic

F ∗hωQ − ωQ = d

(∫ h

0

F ∗t 〈λ, µ〉

)
6= 0

yet the use of symplectic algorithms is attractive given their geometric correctness and long term energy
behaviour, which remains true in the linear nonholonomic case.
Also for simplicity we will require the Lagrangian of our system to be hyperregular (with a slight modifi-
cation it is possible to work with regular ones). Thus we may find a constraint subbundle M ⊂ T ∗Q and
constraint functions Ψ : T ∗Q → Rm. We begin by discretising the Lagrange-D’Alembert principle:

δ

∫ Nh

0

L(q(τ ), q̇(τ ))dτ +

∫ Nh

0

〈λ, µi〉 δqidt = 0

by mimicking the variational results of the holonomic case ([4], [6]):

δ

N−1∑
k=0

Ld(qk, qk+1) + h
N−1∑
k=0

s∑
i=1

bi

[〈
Λi
k, µi(q

i
k)
∂qik
∂qk

〉
· δqk +

〈
Λi
k, µi(q

i
k)
∂qik
∂qk+1

〉
· δqk+1

]
Apart from this, for consistence we must impose the constraints at every single point in the trajectory,

not only on {(qk, pk)}Nk=0 but on every inner step as well
{

(qik, p
i
k)
}N ,s
k=0,i=1

, just as in the holonomic case.

Instead of artificially generating constraints on Q × Q from Φ(q, q̇), it is most natural to work with
Ψ(q, p):

Ψ(qk, pk) = 0, Ψ(qik, p
i
k) = 0, ∀k ∈ [0,N ],∀i ∈ [1, s]

For the set of resulting equations to be solvable we must restrict to those discretisations where q1
k = qk

and qsk = qk+1, which are collocation methods of the Lobatto type. Partitioned Runge-Kutta methods
provide us with a set of inner step values usually noted as (Q i

k,P
i
k), ∀i ∈ [2, s − 1], where if the Q i

k

come from a continuous collocation method, then the P i
k come from a discontinuous collocation method.

These P i
k are not suitable for our purposes as they diminish the order of our method.

Algorithm

We propose a simple and natural way to generate correct order pik from existing computed values in the
integration. The resulting algorithm is as follows:

qk+1 = qk + h
s∑

i=1

biV
i
k,

Q i
k = qk + h

s∑
j=1

aijV
j
k ,

W i
k = D1L(Q i

k,V
i
k) +

〈
Λi
k,D2Φ(Q i

k,V
i
k)
〉

pk+1 = pk + h
s∑

i=1

b̃iW
i
k,

P i
k = pk + h

s∑
j=1

ãijW
j
k ,

P i
k = D2L(Q i

k,V
i
k)

qik = Q i
k

pik = pk + h
s∑

j=1

aijW
j
k

0 = Ψ(qik, p
i
k)

The work flow of the algorithm is still the same, although we need λ0 too as an initial condition, which
may be obtained from the continuous realm.

(q0, v0, λ0) ∈ N × Rm (q0, p0, λ0) ∈ M × Rm (q1, p1, λ1) ∈ M × RmFL F̃h F̃h

Theorem s-stage Lobatto IIIA-IIIB partitioned Runge-Kutta methods of this type preserve the non-
holonomic constraint exactly and their order is the same as the order of its corresponding continuous
collocation method p = 2s − 2.
One can compose methods as usual to easily obtain even higher order methods. This scheme can also be
transposed to Runge-Kutta Munthe-Kaas type Lie group methods when Q = G , Lie group (cf. [6], [7]):

ξk,k+1 = h
s∑

j=1

bjη
j
k,

ξ ik = h
s∑

j=1

aijη
j
k,

(
dLτ−1
−ξk ,k+1

)∗
µk+1 =

(
dLτ−1

ξk−1,k

)∗
µk + h

s∑
j=1

bj
(

dLτ−1

−ξjk

)∗
Nj
k,(

dLτ−1
−ξk ,k+1

)∗
Mi

k =
(

dLτ−1
ξk−1,k

)∗
µk + h

s∑
j=1

bj

(
dLτ−1

−ξjk
− aji

bi
dLτ−1
−ξk ,k+1

)∗
Nj
k,(

dLτ−1
−ξik

)∗
µik =

(
dLτ−1

ξk−1,k

)∗
µk + h

s∑
j=1

aij
(

dLτ−1

−ξjk

)∗
Nj
k

Ni
k =

(
dLτξik

)∗ [
L∗gkτ (ξik)D1`

(
gkτ (ξ ik), dLτξikη

i
k

)
+
〈
D2φ

(
gkτ (ξ ik), dLτξikη

i
k

)
,Λi

k

〉]
Mi

k =
(

dLτξik

)∗
D2`

(
gkτ (ξ ik), dLτξikη

i
k

)
+ h

s∑
j=1

bjaji
bi

(
ddLτξjk

)∗ (
ηjk,
(

dLτξik

)∗
D2`

(
gkτ (ξ ik), dLτξikη

i
k

))
ψ
(
g i
k,
(

dLτ−1
ξik

)∗
µik

)
= 0, gk+1 = gkτ (ξk,k+1) , g i

k = gkτ
(
ξ ik
)
.

where `, φ, ψ : G × g → R are the corresponding reduced L,Φ,Ψ. (ξ, η) ∈ Tg, µ ∈ g∗. τ : g → G
local diffeomorphism, dLτ : g× g→ g, such that Tξτη = Lτ (ξ)∗d

Lτξη, and ddLτ : g× g× g→ g, such

that ∂ξ
(

dLτξη
)
ζ = dLτξddLτξ (η, ζ).


