Elastography: tumor identification

Faustino Maestre
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain.

Elastography is a medical imaging technique which gives information about the elastic properties of the tissue. Thus, if we associated the health or illness of a tissue with its stiffness, this method can tell us about the presence of disease. One important motivation of elastography comes from cancer detection: roughly speaking, a tumor tissue is 5 to 28 times stiffer than normal soft tissue and, consequently, the resulting deformation after a mechanical action is smaller.

From the mathematical point of view, we are interested in solving inverse problems governed by a system of PDEs (see [1],[3]). In this work we analyze an inverse problem governed by the linear elasticity system.

$$
\begin{cases}u_{t t}-\operatorname{div}(A e(u))=f, & (x, t) \in Q \tag{1}\\ u=B, & (x, t) \in \Sigma \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \Omega\end{cases}
$$

The aim of the work is determining the fourth-order tensor coefficient A for the initial-boundary value problem governed by the linear elasticity system such that its unique solution satisfies the additional boundary condition,

$$
A e(u) \cdot \nu=\Upsilon \text { on } S \times(0, T), \text { for a given data } \Upsilon
$$

We reformulate the inverse problem as the minimization of a functional in an appropriate constraint set and we prove that this extremal problem possesses at least one solution with the help of some regularity results (see [2]). Finally we show some numerical experiments in order to check the efficiency of the method solving inverse problems.

Referencias

[1] Ammari H. et al., Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math. 68 (2008), 1557-1573.
[2] Fernández-Cara, E. and Maestre F. An inverse problem in elastography involving Lamé systems, Journal of Inverse and Ill-posed Problems, (2018) (doi: 10.1515/jiip-2017-0065)
[3] McLaughlin, J.R., Yoon, J.-R., Unique identifiability of elastic parame- ters from time-dependent interior displacement measurement, Inverse Problems 20 (2004), 2545.

